BASIC ECHOCARDIOGRAPHY: PW AND CW MODE

Muhadi
Cardiology Div, Dept of Internal Med, Faculty of Medicine, Univ of Indonesia, Cipto Mangunkusumo National General Hospital
Objectives

Transthoracic Echocardiography (TTE)

- Understand normal and simple abnormal findings in PW and CW mode echocardiography
The Modalities of Echo

The following modalities of echo are used clinically:

1. Conventional echo
 - Two-Dimensional echo (2-D echo):
 - anatomical assessment, valvular movement, RWMA
 - Motion-mode echo (M-mode echo):
 - motion assessment over time, distance or depth measurement

2. Doppler Echo
 All modalities follow the same principle of ultrasound
 Differ in how reflected sound waves are collected and analysed
Echo machine
Doppler Echocardiography

Doppler Effect

- Pitch/tinggi nada suara dipengaruhi oleh pergerakan sumber suara: mendekat atau menjauh
- Suara mendekat, frekuensi meningkat, pitch ↑.
- Suara menjauh, frekuensi menurun, pitch ↓
Konsep echocardiografi doppler adalah menangkap sinyal yang dipantulkan oleh sel darah merah, sehingga dapat ditentukan adanya aliran darah, arah kecepatan, dan karakteristik aliran.

- Transducer mengeluarkan gelombang ultra sound yang direfleksikan dari sel darah merah (SDM)
- Bila SDM mendekat maka frekuensi akan meningkat
- Bila SDM menjauh, maka frekuensi akan menurun
Dikenal 2 modalitas doppler yaitu :

- Doppler spectrum (spectral doppler), terdiri dari:
 1. PW ‘pulsed wave doppler’
 (doppler gelombang pulsasi)
 2. CW ‘continuous wave doppler’
 (doppler gelombang kontinu)

- CF ‘Color flow doppler’ ‘Color flow mapping’ (CFM)
Doppler equation

- **F_d**: Doppler shift = $F[r]$ (received frequency) - $F[t]$ (transmitted frequency)
- **F_0**: Transmitted frequency of ultrasound
- **V**: velocity / kecepatan sel darah
- **θ**: intercept angle between the interrogation beam and the target

$$V = \frac{F_d(C)}{2F_0(\cos \theta)}$$
Estimation of blood flow velocity is dependent on incident angle between ultrasound beam and blood flow.

Sudut Doppler

- \(F_d = 2f_o(V)(\cos \theta)/C \)
- \(F_d \delta V(\cos \theta) \)
- **Misalignment** → Pengukuran tidak akurat - lebih rendah
- Bermakna bila \(\theta > 20^\circ \)

<table>
<thead>
<tr>
<th>Angle</th>
<th>Cosine</th>
<th>Percentage error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0.98</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>0.94</td>
<td>7</td>
</tr>
<tr>
<td>30</td>
<td>0.87</td>
<td>13</td>
</tr>
<tr>
<td>60</td>
<td>0.5</td>
<td>50</td>
</tr>
<tr>
<td>90</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>
Spectral analysis

- Positive doppler shift - flow towards transducer
 - Traditionally displayed above baseline
- Negative doppler shift - flow away from transducer
 - Displayed below zero baseline
- **CW and PW**:
 - haemodynamic assessment, calculate velocity, then pressure gradients
- **CFM**:
 - both haemodynamic and anatomical information
PW

- Dengan PW transmisi sinyal gelombang suara dikirim dalam bentuk pulsasi (‘pulse’).

- Dapat dilakukan pemeriksaan pada area tertentu dari suatu area aliran dengan menggunakan yang disebut ‘sample volume’, yang merupakan marka dari daerah yang diinginkan, pada alat ekokardiografi ditandai dengan dua garis sejajar.
Sample Volume
Informasi yang dapat diperoleh berupa:

- Pengukuran fungsi diastolik
- Pengukuran isi sekuncup dan curah jantung
- Pengukuran area mitral atau orifisium aorta
- Mengukur besarnya shunt
A correct PW Doppler spectrum of the flow through the mitral valve shows a clear contour and good delineation of the mitral opening and closure at the baseline. The sample volume is positioned at the level of insertion of chordae into the leaflets.
Pulsed Wave (PW) for inflow pattern (MV)
LV-DIASTOLIC FUNCTION

Normal diastolic function
- 0.75 < E/A < 1.5
- DT > 140 msec
- E/A < 0.75

Mild diastolic dysfunction
- Impaired relaxation

Moderate diastolic dysfunction
- Pseudonormal
- 0.75 < E/A < 1.5
- DT > 140 msec

Severe diastolic dysfunction
- Reversible restrictive

Fixed restrictive
- E/A > 1.5
- DT < 140 msec

Oh JK; Echo manual, 2007
Continuity equation

- The continuity equation menyatakan:
 jumlah darah yang keluar dari satu ruang jantung atau melalui katup jantung harus sama dengan yang keluar

- “Whatever mass flows in must flow out.”
The Continuity Equation

\[A_1 = \pi r^2 = \pi \left(\frac{D}{2} \right)^2 = 0.785 \left(D^2 \right) \]

\[(A_2)(V_2) = (A_1)(V_1) \text{ or } A_2 = \frac{(A_1)(V_1)}{V_2} \]
Pengukuran isi sekuncup dan curah jantung melalui Aortic Valve flow dan Mitral Valve flow

- The measurement of the diameter of the left ventricular outflow tract should be performed in the parasternal long axis view during systole.
- The determination of the velocity time integral of the LVOT should be performed with PW Doppler.
Aliran darah bersifat pulsatif maka perhitungan volumetric flow kompleks karena kecepatan tidak konstan.

Karena itulah diambil pengukuran VTI

VTI = \textit{area under curve} (cm/sec) \times \text{sec}

Mengukur jarak yang ditempuh sel darah pada setiap siklus jantung

VTI = “stroke distance”
VELOCITY TIME INTEGRAL (VTI)

- VTI diperoleh dengan cara mengikuti ujung spektrum kecepatan
Determination of the stroke volume from the aortic valve flow

\[0.785 \times D_{LVOT}^2 \times VTI_{LVOT} = SV_{AV} \]

- \(D \) = diameter
- \(SV \) = stroke volume

Doppler images:
- \(D_{LVOT} \)
- \(VTI_{LVOT} \)
- PW Doppler
Measurement of the cardiac output from the mitral valve flow
- correct method -

\[SV_{MV} = 0.785 \times D_{MV}^2 \times VTI_{MV} \]

- Measurement of the mitral valve diameter (D) during diastole
- In 4 chambers view;
- VTI determination of the mitral valve flow using PW Doppler.

\[D = \text{diameter} \]
\[SV = \text{stroke volume} \]
Transmisi gelombang suara berlangsung secara kontinu, sehingga spektrum lebih luas dari semua area yang dilewati gelombang suara.

Gelombang kontinu dapat menangkap aliran darah kecepatan tinggi dengan baik tanpa terjadi aliasing, yaitu suatu keadaan gambar doppler terputus akibat terlampauiinya batas maksimal kecepatan yang dapat diukur dengan doppler.

CW sangat bermanfaat utk menangkap sinyal dari aliran frekuensi tinggi seperti stenosis katup, dan pengukuran semikuantitatif dari regurgitasi.
VTI CW Doppler in TR

-2.4 m/s
Apa pentingnya kecepatan aliran darah?

Pressure Gradient

The modified Bernoulli equation is applied to convert velocity to pressure.

Pressure gradients are useful for assessment of severity of valvular stenosis and estimation of intracardiac pressures.

Pressure gradients commonly determined by Doppler include:
1) Maximum instantaneous pressure gradient
2) Mean pressure gradient

• Modified Bernoulli’s equation:
 \[\Delta P = 4v^2 \]

• Memberikan estimasi perbedaan tekanan (pressure differences) antara 2 ruang jantung
 • 2 ruang jantung (misalnya: Regurgitasi tricuspid)
 • Stenosis katup jantung (misalnya: stenosis aorta)
Severity of AS by PG

Pressure Gradient

\[P_{\text{max}} = 4 \ V_{\text{max}}^2 \]

\[V_{\text{max}} = 4.7 \text{m/s} \]
\[\text{maxPG} = 87 \text{ mmHg} \]
\[\text{meanPG} = 49 \text{ mmHg} \]

<table>
<thead>
<tr>
<th>Severity</th>
<th>AV Gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILD</td>
<td>< 25 mmHg</td>
</tr>
<tr>
<td>MODERATE</td>
<td>25 - 39 mmHg</td>
</tr>
<tr>
<td>SEVERE</td>
<td>(\geq 40 \text{ mmHg})</td>
</tr>
</tbody>
</table>
MS : MV Pressure Gradient

Mean PG = 21 mmHg

<table>
<thead>
<tr>
<th>Severity</th>
<th>MV Gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILD</td>
<td>≤ 5 mmHg</td>
</tr>
<tr>
<td>MODERATE</td>
<td>6-12 mmHg</td>
</tr>
<tr>
<td>SEVERE</td>
<td>> 12 mmHg</td>
</tr>
</tbody>
</table>
Pressure Half Time (PHT)

- Waktu yg dibutuhkan Pressure Gradient utk turun menjadi separuhnya dari nilai maksimal

- *Normal*: Kecepatan dan pressure turun secara cepat begituada aliran dimana pressure pada kedua ruang jantung akan berangsur menjadi sama

 ➔ Pressure antara LA/LV equalized
Pressure Half Time (PHT)

<table>
<thead>
<tr>
<th>Severity</th>
<th>AR PHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILD</td>
<td>> 550 msec</td>
</tr>
<tr>
<td>MODERATE</td>
<td>300-550 msec</td>
</tr>
<tr>
<td>SEVERE</td>
<td>< 300 msec</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Severity</th>
<th>MV PHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILD</td>
<td>90 – 149 msec</td>
</tr>
<tr>
<td>MODERATE</td>
<td>150 - 219 msec</td>
</tr>
<tr>
<td>SEVERE</td>
<td>> 220 msec</td>
</tr>
</tbody>
</table>
Prinsip CFM adalah sama dengan PW tetapi menangkap sinyal pada beberapa titik sepanjang garis penyitraan.

Dengan kesepakatan diberi warna merah utk aliran darah yang mendekati transducer dan warna biru yang menjauhi transducer “BART system” (Blue Away Red Towards Transducer)

Pada keadaan tertentu dimana aliran bersifat turbulen terjadi campuran warna merah dan biru atau mosaik
Informasi yang diperoleh:

- Menentukan arah dan waktu aliran
- Menentukan sifat aliran laminar atau turbulen
Color Flow Mapping in MR

- Rapid Screening in all Echo Window
- 3 Components: Flow Convergence, Width at the Neck & Spatial Orientation with Direction
- Scale 0 to 4
Colour Flow Doppler in MR

<table>
<thead>
<tr>
<th>Severity of MR</th>
<th>LVOT jet width</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>< 25% of LVOT</td>
</tr>
<tr>
<td>Moderate</td>
<td>25-65% of LVOT</td>
</tr>
<tr>
<td>Severe</td>
<td>> 65% of LVOT</td>
</tr>
</tbody>
</table>
Severity of AR

- **Mild**: < 25 % of LVOT
- **Moderate**: 25-65 % of LVOT
- **Severe**: > 65 % of LVOT

Colour Flow Doppler in AR
Colour Flow Doppler in TR
KESIMPULAN

- Metode Doppler Echo (PW, CW, Color Doppler) mempunyai banyak manfaat aplikasi klinis dalam pengukuran yang dilakukan pada pemeriksaan Echocardiography untuk kepentingan tatalaksana pasien selanjutnya.
- Berbagai parameter pengukuran hemodinamik Doppler mempunyai kelebihan & kekurangan masing-masing.
- Perlu kontrol dan pemilihan jenis metode Doppler yg tepat utk tiap pengukuran yg diinginkan agar mendapatkan hasil yg akurat.
TERIMA KASIH